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Abstract
Specific features of the kinetics of geminate reactions assisted by dispersive
(subdiffusive) relative motion of reacting particles are analysed in detail. The
analysis is made for different long-range dependences of the reactivity k(r)
on the interparticle distance r : square box, exponential, and inverse power
type. The kinetics is obtained by analytical solution of the non-Markovian
master equation and by direct numerical simulation of the process. The reaction
kinetics is shown to be anomalous, namely, significantly different from that
predicted for processes assisted by normal diffusion. The difference manifests
itself both in static and time dependent characteristics of the kinetics depending
on the form of k(r) and on the anomaly parameter α < 1 (which determines
the time dependence of the mean square displacement 〈r 2(t)〉 ∼ tα). The
anomalous kinetic peculiarities are most clearly demonstrated with the initial
distance (r0) dependence of reaction probability ϕr (r0). For localized k(r)
(square box and exponential) it is similar to that known for normal diffusion
ϕr (r0) ∼ 1/r0. For k(r) ∼ 1/rm , however, the behaviour of ϕr (r0) depends
on n = αm: at n > 3 the function ϕr (r0) is similar to that for localized
k(r), but at 3 > n > 2 we found ϕr (r0) ∼ 1/rn−2

0 . A similar change-over
is also observed for the long time part ns(t) of the kinetics N(t) (the number
of surviving pairs). For localized k(r) it is universal: ns(t) ∼ 1/tα/2. For
k(r) ∼ 1/rm and 3 > n > 2, the decay of ns(t) proves to be more dispersive:
ns(t) ∼ 1/tα(1−2/n). Possible applications of the present results are discussed.

1. Introduction

Subdiffusion occurs by spatial restrictions of motion of random walkers caused by fractal
structures or by the distribution of hopping frequency of random walks or both [1–3]. Reaction
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kinetics depends on the distribution of reactants, which cannot be characterized solely by
the mean square displacements under subdiffusive transport because the distribution can be
distorted from Gaussian [3]. Therefore, it is important to know the origin of subdiffusive
transport when we consider reactions. We focus our attention on reactions in subdiffusive media
where the hopping frequency is distributed. An example is photoluminescence in amorphous
semiconductors in which photoluminescence originates from radiative recombination of
electrons and holes in band-tail states [4, 5]. The hopping transport can be described by the
fractional diffusion equation [2, 6, 7],

ρ̇ (�r , t) = 0 D1−α
t Dα∇2ρ (�r , t) , (1)

where the Riemann–Liouville fractional derivative is defined by

0 D1−α
t f (t) = 1

�(α)

∂

∂ t

∫ t

0
dt1

f (t1)

(t − t1)
1−α . (2)

0 D1−α
t operates on an arbitrary function f (t) by convolution and can be interpreted as a

memory effect. The conventional Markovian diffusion equation results from an exponential
waiting time distribution function. Since reaction in the absence of transport is also Markovian,
the theoretical method to treat reaction under normal diffusion has been well established [8].
However, if the transport is dissipative and has a long-ranged memory as shown in equation (1),
reaction interferes with diffusion for finite reactivity. The kinetics of reactions, which are
assisted by dispersive diffusion described by the fractional diffusion equation, have been
considered only recently [9–21]. For contact reactions, the whole time kinetics of the survival
probability is well described by the result of the fractional reaction–diffusion equation [18],

ρ̇ (�r , t) = 0 D1−α
t

[
Dα∇2ρ (�r , t)− kαδ (r − R) ρ (�r , t)

]
, (3)

where the fractional derivative 0 D1−α
t operates on both terms in square brackets.

However, problems arise when it is generalized to include spatial dependence of reactivity.
Under long-range reaction a fractional reaction–diffusion equation similar to equation (3) is
derived for an auxiliary quantity which is related to but different from the real density [20].
In fact, the fractional reaction–diffusion equation for the real probability density is more
complicated than the above fractional reaction–diffusion equation [15–17]. The equation has
already been presented in the Laplace domain and solved approximately by applying some
methods of quantum scattering theory [16, 17]. In this article, we show for the square box
reactivity that the fractional reaction–diffusion equation for the real density reproduces the
numerical results of direct Brownian motion simulation. Although this fractional reaction–
diffusion equation is exact, it is difficult to solve for other spatial dependence of reactivity. We
introduce an approximation, examine its validity and investigate the interference of dispersive
diffusion with three types of long-range reactivity, i.e. square box sink, exponential sink and
inverse-power type sink on the basis of the approximation.

2. Fractional reaction–diffusion equations

We consider the geminate reaction of a pair of particles, denoted as A and B, which undergo
dispersive (subdiffusive) relative diffusion in the three dimensional space. The reaction is
modelled by the first order decay process with isotropic long-range decay rate k(�r) ≡ k(r)
depending on the distance r between particles. We assume, in addition, that one of these
particles, say particle B, does not move, staying at rest at �rB = 0, so that the evolution of the
system in the coordinate space is determined by that of particle A in the space {�r} of relative
AB-coordinate �r .
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The kinetics of geminate reaction is known to be completely described by the probability
density function (PDF) ρ(�r , t). In the case of conventional (Markovian) diffusion of particle
A, ρ(�r , t) is known to satisfy an equation similar to the so called stochastic Liouville equation
(SLE). In the considered model of non-Markovian dispersive relative migration of particles
the problem of obtaining ρ(�r , t) is more complicated. Recall that dispersive migration is the
stochastic motion for which the mean square displacement 〈r 2(t)〉 ∼ tα , where α < 1.

For dispersive (non-Markovian) migration ρ(�r , t) is shown to satisfy some equation as
well [15–17]. This equation is derived within the continuous time random walk (CTRW)
approach and can be considered as a simple particular variant of the non-Markovian
generalization of the Markovian SLE. It is worth recalling that in the CTRW approach relative
migration is modelled by the process of stochastically independent jumps controlled by the
waiting time PDF ψ(t) [15–17, 22] (for simplicity we assume that ψ(t) is independent of r ).
In general, for any function ψ(t) the non-Markovian SLE is conveniently expressed in terms
of the Laplace transform ρ̂(�r , s) = ∫ ∞

0 dt exp(−st)ρ(�r , t) [15–17] (some comments on the
alternative derivation of this equation are presented in the appendix):

(s + k (�r)) ρ̂ = λ2
[∇2/(2d)

] [M̂(s + k(�r))ρ̂] + ρ0(�r), (4)

where the Laplace transform of the memory function is defined as

M̂(s) = sψ̂(s)/[1 − ψ̂(s)] (5)

and λ is the characteristic jump length of the migration.
In equation (4) ρ0(�r) is the initial distribution of pairs. In what follows we will assume

that initially pairs are created isotropically at a distance r0, i.e.

ρ0(�r) = (4πr 2
0 )

−1δ(r − r0). (6)

Within the CTRW approach dispersive migration is realized for a special type of the long-
tailed PDF ψ(t), whose long-time behaviour is represented as

ψ(t) 	 α� (α + 1) /(γ αr tα+1), (7)

with γr being the characteristic rate of jumps. For PDF (7) one can find a simple expression
for the Laplace transform of the memory function: λ2 M̂(s)/(2d) 	 Dαs1−α at small s, where
Dα ≡ (sinπα/2dπα)γ αr λ

2 is the generalized diffusion coefficient [23]. It is easily seen that
for this type of ψ(t), equation (4) can be represented in the form of the fractional reaction–
diffusion equation

ρ̇ = Dα∇2
[
e−k(�r)t

0 D1−α
t

(
ek(�r)tρ

)] − k (�r) ρ. (8)

In the above equation, the non-Markovian kernel 0 D1−α
t is influenced by reaction due to the

interference of reaction with dispersive transport.
In our work we will mainly be interested in calculating the survival probability given by

N(t, �r0) = ∫
d�r ρ(�r, t), where the integration is taken over the region outside the perfectly

reflecting boundary. In the presence of the reflecting boundary condition, the decrease per unit
time in the survival probability should obey Ṅ (t, �r0) = − ∫

d3r k(�r)ρ(�r , t). By transformation
of the volume integral into a surface one for the volume integration of equation (8) we can find
that the perfectly reflecting boundary condition is expressed as

�n · ∇[e−k(�r)t
0 D1−α

t (ek(�r )tρ)]|r=R = 0, (9)

where �n = �r/|�r | is the vector normal to the contact sphere. In the Laplace domain, the perfectly
reflecting boundary condition is expressed as

�n · ∇[M̂ (s + k (�r)) ρ̂]|r=R = 0. (10)
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Equation (4) can be formally solved in operator form [16]. In particular in the case of
dispersive migration the solution is given by

ρ̂(�r , s) = [s + k(�r)]α−1
{[s + k(�r)]α − Dα∇2

}−1
ρ0. (11)

The solution can only be obtained for the box model of k(r) (see section 3). One can also solve
this equation in the limit of small s with the use of methods of the quantum scattering theory
developed to describe the low-energy scattering [16, 17]. The small-s solution allows one to
obtain the long-time behaviour of the reaction kinetics N(t).

But here we would like to briefly analyse the approximation recently proposed, which is
based on some modification of the exact equation (4) [20]. This approximation appears to be
fairly accurate for small s, i.e. reproduces quite well the the asymptotic behaviour of N(t) for
a large variety of dependences k(r) and also enables one to solve the problem analytically for
exponential k(r).

The key points of this approach can conveniently be understood by comparison of the
found expression:

ρ̂a(�r , s) = kα−1(�r) [sα + kα(�r)− Dα∇2
]−1

ρ0 (12)

with the exact one (11). It is seen that ρ̂(�r , s = 0) = ρ̂a(�r , s = 0) so that the
approximation (12) reproduces correctly all steady state characteristics of the reaction kinetics.
In addition, the applied approximation [s + k(�r)]α ≈ sα + kα(�r) is quite accurate in both
limits k � |s| and k � |s|. As for the approximation [s + k(�r)]α−1 ≈ kα−1(�r), it is also quite
reasonable for small |s| (corresponding to long times), taking into account that in the expression
for the reaction rate −Ṅ(t) ∼ ∫

d3r k(r)ρ(r, t) the contribution of small k(r) at large r is
truncated by the term k(r) in the integrand. In this approximation, the solution is obtained from
that of the corresponding reaction–diffusion equation under normal diffusion by substituting
D1 → s1−αDα and k(�r) → s1−αkα(�r) after Laplace transformation [20]. Therefore, we can
obtain analytical approximate solutions for a number of different k(r)-dependences. Perhaps
one of the most important of them is exponential: k(r) = k0 exp(−βr) (see below) [20]. It is
evident that in this case the replacement k(r) by kα(r) reduces just to the change of β for αβ .

Unfortunately the approximation (12) does not reproduce the exact formula at |s| � k(r)
in the static limit, i.e. for Dα → 0. In this limit the exact expression (11) predicts exponential
decay of the number of pairs:

N̂ (s) = [s + k(r0)]−1 and N(t) = exp[−k(r0)t], (13)

as expected. The prediction of approximate formula (12), however, is essentially different:

N̂a(s) = [s + kα(r0)s
1−α]−1 and Na(t) = Eα[−(k(r0)t)

α], (14)

where Eα(−x) = (2π i)−1
∫ i∞
−i∞ du eu(u + xu1−α) is the Mittag–Leffler function [1]. It is

seen that at small times t the approximate reaction kinetics is stretched exponential, Na(t) ∼
exp[−(k(r0)t)α/�(1 + α)], while at large t it is of inverse power type, Na(t) ∼ 1/[k(r0)t]α .

Naturally, this drawback of the approximation (12) persists in the case of finite mobilities
(Dα �= 0) as well. The deviation of the kinetics Na(t) from N(t) will be most pronounced
at the initial stage of the reaction, determined by |s| � k(r) (in this inequality k(r) should be
taken at distances r which mainly contribute to the reaction).

Especially strong manifestation of the static behaviour is expected in the case of very fast
rates and long-range k(r). This statement can conveniently be clarified with the exponential
k(r): k(r) = k0 exp(−βr). The fact is that for any particular r one can always find large enough
k0, for which the diffusive displacement during the characteristic reaction time τr (r) ∼ 1/k(r),
l(r) ∼ √

Dαταr (r), is much smaller than the characteristic size β−1 of the function k(r):
l(r) � β−1. This inequality implies applicability of the static limit and therefore low accuracy

4
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of approximation (12). The above estimation shows that the r -region of high accuracy of the
static approximation and low accuracy of equation (12) increases with the increase of k0 or
increase of the characteristic length 1/β of the function k(r).

The results and conclusions of general analysis presented above will be illustrated in the
next section within some models for k(r).

3. Applications

3.1. Asymptotic kinetics

In this subsection we present a general method for calculating the escape probability when
reaction proceeds under dispersive diffusion. The method is a generalization of that formulated
to calculate the escape probability in normal diffusion-controlled reactions [24]. The escape
probability ϕ(�r) is the probability that a particle starting from a given position �r , performing a
diffusive motion, will escape reaction. It is also convenient to introduce the quantity ϕt(�r0) by

ϕt (�r0) ≡
∫

d�rϕ (�r) ρ (�r , t|�r0) , (15)

where ρ(�r , t|�r0) satisfies equation (8) with the initial condition δ(�r − �r0). The function ϕt(�r)
is finite and ϕt=0(�r0) = ϕ(�r0). In the Markovian processes, ϕt(�r) is independent of time and is
equal to ϕ(�r) for all times [24]. By taking the Laplace transform of the identity,

ϕ̇t (�r0) =
∫

d�rϕ (�r) ρ̇ (�r , t|�r0) , (16)

and substituting equation (4), the above equation is transformed into the equation for ϕ̂s(�r0) =∫ ∞
0 dt exp(−st)ϕt (�r0) as

sϕ̂s (�r0)− ϕ (�r0) =
∫

d�rϕ (�r) [λ2
(∇2/2

)
M (s + k (�r)) ρ̂ (�r , s|�r0)− k (�r) ρ̂ (�r , s|�r0)

]
(17)

=
∫

d�r ρ̂ (�r , s|�r0)
[
λ2 M (s + k (�r)) (∇2/2

)
ϕ (�r)− k (�r) ϕ (�r)] , (18)

where the boundary condition for ρ̂(�r , s|�r0) given in equation (10) is used and the boundary
condition for ϕ(�r) is set as

�n · ∇ϕ (r)|r=R = 0. (19)

In the limit of s → 0, we have ϕ̂s(�r0) → ϕ(�r0)/s and λ2 M(s)/2 	 Dαs1−α; the above equation
becomes

0 =
∫

d�r ρ̂ (�r , 0|�r0)
[
k1−α (�r) Dα∇2ϕ (�r)− k (�r) ϕ (�r)] . (20)

Since ρ̂(�r , 0|�r0) is independent of ϕ(�r) for arbitrary initial distance �r0, the escape probability
would satisfy

Dα∇2ϕ (�r)− kα (�r) ϕ (�r) = 0. (21)

The relevant boundary conditions are

ϕ (�r) = 1, as r → ∞ (22)

and equation (19). As a result, the equation for the escape probability under dispersive diffusion
is obtained from that under normal diffusion by substitution, k(�r)/D1 → kα(�r)/Dα .

The escape probability is not only important for analysing steady state experiments but also
is useful to analyse the asymptotic kinetics of geminate recombination. In the case of normal

5
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diffusion with any model of reactivity, it is known that the asymptotic kinetics of the survival
probability N(t, r0) is expressed as [25], N(t, r0) 	 ϕ(r0)(1 + �R/

√
πD1t), as long as the

reaction radius �R can be obtained from the asymptotic dependence of the escape probability
at large initial separations,

ϕ (r0) 	 1 − �R/r0. (23)

The result has been recently generalized to the kinetics under dispersive transport as

N(t, r0) 	 ϕ (r0)

[
1 + �R

� (1 − (α/2))
√

Dαtα

]
, (24)

for a highly localized reactivity [17, 19]. In the approximation shown by equation (12),
the Laplace transform of the survival probability under dispersive transport is obtained by
that under normal diffusion by substituting D1 → s1−αDα and k(�r) → s1−αkα(�r). By
applying such substitution to the Laplace transform of the asymptotic form of the survival
probability under normal diffusion, the result after inverse Laplace transformation leads to
equation (24). Therefore, the asymptotic kinetics is correctly reproduced by the results of the
approximate solution as long as �R exists. Equation (24) presents the simplest way to calculate
the asymptotic kinetics of the survival probability of the geminate pair from the solution of the
differential equation for the escape probability (equation (21)) for any initial distance r0.

3.2. Square box type reactivity

First, we consider an example for which the analytical solution is possible from equation (8):
the square box type reactivity function k(r) without a reflecting boundary [26–29], k(r) =
k0θ(R − r) where θ(x) is the Heaviside theta function. We compare the exact survival
probability with the approximate solution by equation (12). The Laplace transform of the exact
survival probability obtained from equation (8) in the case of r0 < R is given by

N̂ (s) = 1

s + k0

[
1 + k0

s

(1 + Rq (s)) sinh
[
r0q (s + k0)

]
r0q (s + k0) cosh

[
Rq (s + k0)

] + r0q (s) sinh
[
Rq (s + k0)

]
]
, (25)

where q(s) = √
sα/Dα . The approximate solution of the survival probability in the Laplace

domain is obtained from equation (5.10) of Tachiya’s result [29] by substituting D1 → s1−αDα

and k0 → s1−αkα0 as explained below equation (12). In the long-time limit, both results
lead to the asymptotic kinetics of equation (24), where the escape probability is given by
ϕ(r0) = sinh(r0q(k0))/[r0q(k0) cosh(Rq(k0))] and the reaction radius is �R/R = 1 −
tanh(Rq(k0))/(Rq(k0)). The exact and approximate whole time kinetics were obtained by
the numerical inversion of the corresponding Laplace transforms of the survival probability
through the Stehfest algorithm [30]. Previously, the approximate solution has been compared
with the results of numerical simulations for r0 = 2R [20]. The comparison reveals some
discrepancy between these two calculations which is at most 7% of the initial population
and is observed at short times. In the present study, the initial condition corresponding to
localization of the pair deep inside the region of efficient reaction, r0 = 0.1R, is considered.
In the simulation the jump length parameter was assumed as λ = 0.1R. Other parameters are
α = 0.5, k0(R2/Dα)

1/α = 0.1 and time is normalized by hopping frequency, γr. The CTRW
simulation procedure is the same as that used previously [18–20]. Particles react when the
reaction time generated from the exponential distribution with the mean value 1/k0 is smaller
than the detrapping time of the random walk. The trajectory is calculated until the particle
either reacts or escapes to a large distance 100R. The simulation is repeated for at least
104 independent trajectories [20]. In figure 1, the analytically obtained value of the escape

6
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Figure 1. Time dependent part of the survival probability ns (t) as a function of time for α = 0.5
and square box sink. Time is normalized by γr, r0/R = 0.1 and λ/R = 0.1. k0(R2/Dα)

1/α = 0.1.
The thick solid line is the result of Laplace inversion of the exact expression, equation (25). The
thin solid line is the approximate solution by equation (12). Dots represent the results of numerical
simulations. The long-dashed line is the asymptotic kinetics of equation (24). The short-dashed line
is the static result described in the text. The dot–dashed line is the static result of the approximate
equation.

probability 0.8608 is subtracted from the analytical solutions of survival probability and the
numerical result of the escape probability 0.861 is subtracted from simulation results. As shown
in figure 1, the inverse Laplace transformation of equation (25) coincides with the results of
numerical simulations as it should. The approximate results deviate at intermediate times. In
the asymptotic region, both results converge to the result of equation (24). The initial decay of
the exact solution is described by equation (13), while that of the approximate solution is given
by equation (14). The behaviour at intermediate times is not reproduced well enough by any
approximate solutions.

3.3. Exponentially decreasing reactivity

The case of exponentially decreasing reactivity k(r) = k0 exp(−2βr) is very important from
the point of view of possible applications. For example, the effect of this kind of reactivity
is thoroughly discussed in connection with the interpretation of some experiments on gemi-
nate recombination [4, 8]. The escape probability under normal diffusion is already known, so
that the escape probability under dispersive transport is obtained by substitution, k(�r)/D1 →
kα(�r)/Dα in the expression for the escape probability under normal diffusion as explained be-
low equation (21). In the limit that the radius of the reflecting boundary goes to zero, i.e. R →
0, the escape probability is obtained from the known result under normal diffusion [31]

ϕ (r0) = 1

αβr0

(
K0(x)− K0 (xc)

I0 (xc)
I0 (x)

)
, (26)

7
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Figure 2. Time dependent part of the survival probability ns (t) as a function of time for α = 0.6 and
tunnelling rate k0 exp(−2βr). Time is normalized by γr and the distance is normalized by the jump
length parameter λ. 1/β = 20. Three sets of data are presented; they are r0 = 0 and xc = 6.61,
r0 = 0 and xc = 1.61, r0 = 100 and xc = 3.27 as shown in the annotation. Dots represent
the results of numerical simulations. The thin solid lines are the asymptotic time dependence of
equation (24). The thick solid line is the approximate solution by equation (12).

where xc ≡ √
kα0 /Dα/(αβ) and x = xc exp(−αβr0). If the initial position of the pair is r0 = 0,

the escape probability is further simplified to [20], ϕ(0) = 1/I0(xc). On the other hand, in the
limit of large initial separation the escape probability is written in the form of equation (23)
with

�R = 1

αβ

(
γ + ln (xc/2)+ K0 (xc)

I0 (xc)

)
, (27)

where γ = 0.577 21 · · · is Euler’s constant [32]. The asymptotic kinetics of the survival prob-
ability is obtained by substituting equations (26) and (27) into equation (24). In the limit of
xc � 1, which indicates that the tunnelling rate is smaller than the diffusional escape rate from
the region of r < 1/(αβ), the effective reaction radius is simplified to �R 	 (xc/2)2 and the re-
combination rate reduces to that obtained previously in the case of r0 = 0 [20]. In the opposite
limit of xc � 1, the result also reduces to that obtained previously [16].

Now let us compare the asymptotic result obtained from equations (24), (26), and (27)
with those of numerical simulation. In our Brownian simulation, length is normalized by the
jump length λ and the time is normalized by the hopping frequency γr. In these units the
tunnelling length is taken to be 1/β = 20. In our simulation of 104 trajectories we take the
dispersive parameter α = 0.6, the escape distance 104 and the cut-off distance of reaction
50/β . Figure 2 shows the results for the case of initial distance r0 = 0 and xc = 1.61.
According to these results, the theoretical and simulation values of the escape probability
are 0.567 and 0.566, respectively. The long time behaviour of the kinetics N(t) obtained by
simulation proves to be in good agreement with that predicted by equation (24). For the sake of

8
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comparison we also plot N(t) found by approximate solution of equation (12). Some deviation
from the simulation results is observed at intermediate times. The deviation increases with the
increase of reaction strength corresponding to the increase of xc. Figure 2 also displays the
results of similar calculation for xc = 6.61 with the same initial condition of r0 = 0. The
escape probability calculated by simulation, 0.0089, turns out to be close to the theoretical
value 0.0085. The reaction strength used in this calculation appears to be large in a sense that
the corresponding escape probability is very small. It is seen that for xc = 6.61 the results
obtained with the approximate solution deviate from simulation results more significantly than
for xc = 1.61, in accordance with explanations presented in the last part of the previous section.
It is also clear that for exponential k(r) this deviation is smaller than that for the box model
(see in figure 1), because in the case of exponential k(r) the reaction occurs mainly at short
distances as compared to those typically contributing to the reaction in the square box model.
We also present the results of calculation for the initial distance 100 with xc = 3.27. For this
initial distance the escape probability obtained from the simulation, 0.653, is also close to the
theoretical value 0.656 calculated with equation (26). Similarly, the prediction of equation (24)
agrees well with the simulation results in the asymptotic time range for any initial conditions
and reaction strength chosen for simulations.

3.4. The inverse power type reactivity

3.4.1. Escape probability. The model of inverse power type distance dependence of reactivity
k(r) = k0(RF/r)m is also very important for applications. The fact is that quite a number of
energy transfer processes are described just by this type of k(r). The most well known is the
so-called Förster mechanism of energy transfer [33]. In the case of this inverse power type
dependence k(r) equation (21) for escape probability should be solved with effective reactivity
kα(r), which is also of inverse power type

kα (r) = kα0 (RF/r)n with n = mα. (28)

For n � 2 the reaction kinetics is quasistatic [16] and the escape probability is, naturally,
equal to zero. When n > 2, it is non-zero and is determined by equation (21). Solution of this
equation with reflective boundary condition yields4

ϕ(r) =
√

RF

r

2 (νxF )
ν [Kν (2νx)− C Iν (2νx)]

� (ν)
with ν = 1/(n − 2), (29)

where xF = RF
√

kα0 /Dα , x = xF(RF/r)
1

2ν , and the coefficient C is given by

C = Kν (2νxR)− xR Kν+1 (2νxR)

Iν (2νxR)+ xR Iν+1 (2νxR)
(30)

with xR = xF(RF/R)
1

2ν . Note that in the limit xR > 1, which is realized for kα0 > DαR2
F

and RF > R, expression (29) is simplified since C 	 0. It is of certain interest to consider
the escape probability at large initial separations. Expansion of the modified Bessel functions
results in [32]

ϕ(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 −
(

RF

r

)n−2 x2
F

(3 − n) (n − 2)
for 3 > n > 2,

1 − RF

r
x2

F ln

(
r

RF

)
for n = 3,

1 − RF

r
(νxF )

ν

[
� (1 − ν)

� (1 + ν)
+ 2C

� (ν + 1) � (ν)

]
for n > 3.

(31)

4 The eigenfunctions of the problem are found in the textbook of Landau and Lifshitz [34].
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Figure 3. Time dependent part of the survival probability ns(t) as a function of time for reactivity
k0(RF /r)6. Time is normalized by γr and the distance is normalized by the jump length parameter
λ. Other parameters are given in the text. Dots represent the results of numerical simulations. The
solid line is the asymptotic time dependence of equation (24) for α = 0.583 and the power law
Ct−α/2 with C being arbitrary chosen for α = 0.42. The dashed line is Ct−μ with C = 0.75 and
μ = 0.102 obtained by fitting to the numerical results of α = 0.42.

It is seen that the conventional 1/r -behaviour at large distance, resulting from free diffusive
motion outside the region of efficient reaction, is found only for n > 3. In the limits of xF � 1
or R 	 0 the parameter C 	 0 and the expression ϕ(r) is similar to that expected from the
results obtained previously for steady state concentration of bulk reactions [16]. In the case of
2 < n � 3, some of the particles can still escape from recombination. However, the distance
dependence of the escape probability ϕ(r) strongly deviates from 1/r -dependence since the
spatial dependence of reactivity k(r) is so long ranged that it disturbs the diffusion fluxes at
all distances (even very large). For example, in the case of the Förster mechanism of energy
transfer [33], for which k(r) = k0(RF/r)6, the escape probability is non-zero at α > 1/3, but
the conventional 1/r -dependence on the initial distance is predicted only for α > 1/2.

In order to test the accuracy of the above expressions and analyse the reaction kinetics
we also performed Brownian simulation for the rate k0(RF/r)6 with RF/λ = 2, xF = 0.5,
r0/λ = 2 and R = 0. The simulation method is the same as that for the tunnelling rate
except for the cut-off distance of reaction, 3000RF . Figure 3 shows the results for α = 0.583
(mα = 3.5) and α = 0.42 (mα = 2.5).

The escape probabilities calculated by simulations, 0.63 for α = 0.583 and 0.523 for
α = 0.42, appear to be very close to the corresponding theoretical values 0.615 (for α = 0.583)
and 0.515 (for α = 0.42) obtained with equation (29).

3.4.2. Long time reaction kinetics. The situation with long time kinetics is more complicated.

(1) In the case α = 0.583, for which n = mα > 3, the asymptotic kinetics is similar to that
predicted for short range reactivity k(r) and is well described by equation (24).

10
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(2) For smaller values of parameter α which correspond to 2 < n < 3, the escape probability
is not described by equation (23) and the long time behaviour of N(t) is not described
by (24). Simulation for α = 0.42 shows, however, that the long-time tail of the kinetics
seems to be still of power type, ∼1/tμ, but with the value of exponent μ differing from
the α/2 = 0.21 predicted for short-range k(r).

In general, the calculation of reaction kinetics N(t) reduces to solving the complicated
Schrödinger-like equation (4), which cannot be solved analytically. Most important specific
features of the kinetics can nevertheless be analysed with the use of approximate methods.

For example, for relatively sharp k(r)-dependences, k(r) ∼ r−m with m > 3/α
(corresponding to n = mα > 3), one can apply the approximate theory developed for short-
range reactivities [16]. This approximation leads to equation (24), the validity of which is
confirmed by numerical results.

Unfortunately, the short range approximation is not applicable in the case 2 < n < 3.
However, it is still possible to solve equation (4) approximately. Below we will outline the
method of approximate solution and discuss some results obtained for the problem considered.

The approximate method is based on the observation that for 2 < n < 3 the long-time
tail of reaction kinetics can be evaluated by treating the effect of k(r) perturbatively [34]. This
method can be formulated in terms of the Laplace transform of the rate, Ĵ(t); Ṅ (t) = −J (t).
Evidently, the survival probability is determined by the rate,

N̂ (s) = [1 − Ĵ (s)]/s. (32)

The general expression for the Laplace transform of the reaction rate Ĵ(s) is given from
equation (4) as

Ĵ (s) = r−1
0

∫ ∞

0
dr rk(r)

(
2/λ2

)
M̂−1(s + k(r))ĝ(r, r0|s), (33)

where M̂(s) = (2d Dα/λ
2)s1−α is defined in equation (5) and ĝ(r, r0|s) is the Green’s function

satisfying equation [κ2
α(s + k(r))− d2/dr 2]g = δ(r − r0) in which κα(s) = √

sα/Dα .
The main contribution to the term independent of s, Ĵ (0), comes from the region of r

where k(r) is relatively strong (strongly disturbs the PDF ρ̂(r, s)) while the first s-dependent
term of J (s) is determined by the process at large distances where k(r) is small. Specifically,
they are given by the relation between distances rs = RF (k0/s)1/m and rκ = 1/κα . To avoid
the analysis of the non-interesting effect term Ĵ (0) independent of s, hereafter we will assume
k(r) to be so weak that rκ > rs in the region of s corresponding to the timescale of our interest.
The solution can be found by expansion of the s-dependent term of J (s) in powers of k(r).

In the lowest order in k(r) the s-dependent part of the rate Ĵ (s) can be evaluated by
equation (33) but with the approximate (free subdiffusion) Green’s function ĝa(r, r0|s):

ĝ(r, r0|s) 	 ĝa(r, r0|s) = (2κα(s))
−1[e−κα(s)|r−r0| − e−κα(s)(r+r0)] (34)

which obeys equation

[κ2
α(s)− d2/dr 2]ĝa = δ(r − r0). (35)

The simple approximation (equation (34)) is sufficient for describing quite accurately the
behaviour of N̂(s) in the region s → 0 and predicting asymptotic dependence N(t) at long
times. In the expression for ĝ(r, r0|s) the terms depending on r0 describe the escape probability.
Since we are interested in the process at large distances where k(r) is small, equation (34)
is further simplified by taking the limit of r � r0. In any case for r � r0 the escape
probability determines only the amplitude of the long time dependence N(t) and does not
affect its functional form which is of main interest in our analysis.
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Equations (33) and (34) lead to the following expression for Ĵ (s) at small s → 0

Ĵ (s) = Ĵ (0)+ Ĵi (s)+ Ĵ f (s). (36)

where

Ĵi (s) ∼
∫ ∞

0
dr rkα(r)[1 − e−κα(s)r ], (37)

Ĵ f (s) ∼
∫ ∞

0
dr r{kα(r)− k(r)[s + k(r)]α−1}e−κα(s)r . (38)

When equation (36) is introduced in equation (32), the term 1− Ĵ(0), is shown to equal to ϕ(r0),
which is not interesting for our further discussions. Formulae (36)–(38) prove to be very useful
for analysis of the time dependent part of the survival probability. At very small s, estimation
of N̂ (s) − ϕ(r0)/s 	 Ĵ f (s)/s ∼ s(n−2)/m−1

∫ ∞
0 dxx2/m[xα−1 − (1 + x)α−1] ∼ s(n−2)/m−1

indicates that

N(t) 	 ϕ(r0)+ x2
F (k0t)−μ f where μ f = (n − 2)/m. (39)

μ f can conveniently be represented as

(2/α)μ f = 2(n − 2)/n. (40)

The rigorous analytical expressions are obtained for equations (37) and (38). By analysing the
analytical expression it can be shown that equation (39) is indeed the long-time asymptote.

The proposed approach allows one to obtain the exact expression for the exponent μ f

in the final asymptotic behaviour of N(t) (given in equation (39)). It is clear that the final
asymptotic dependence (39) seems to exist for values of 4 > n > 2, though the corresponding
contribution is expected to decrease with the increase of n. In terms of results of the above
analysis the conventional asymptotic behaviour N(t) ∼ t−α/2 found for 4 > n > 3 is, actually,
intermediate since μ f < α/2 in the case of 4 > n. The final asymptotic dependence n f (t) is
still given by equation (39) though the difference in the powers as well as the amplitude of the
part of the kinetics is small.

To test the above prediction we performed simulations for a few values of α in the region
1/3 < α � 0.5, which correspond to 2 < n < 3. In order to make the errors in the escape
probability less than 2% of those estimated from equation (29), the simulations were performed
for 2×104 independent trajectories with the cut-off distance of reaction, 5000RF . Other values
of parameters are RF/λ = 2.0, xF = 0.2, r0/λ = 2.0 and R = 0. In figure 4, we present the
dependence of 2μ/α on n for 2 < n < 3, where μ is the exponent determined by fitting
numerical data to the dependence Cμt−μ for each value of α. The obtained values of 2μ/α
correlate with the theoretical line based on equation (40) as seen from figure 4. (2/α)μ f

depends only on n regardless of the exponent m. In order to check this relation for m different
from 6, we also performed simulations of dispersive diffusion under dipole–quadrupole energy
transfer, k(r) = k0(RF/r)8. As shown in figure 4, μ is independent of m for the same set of α
and n = mα.

It is worth noting that in the simulation we had to take a large value of the cut-off distance
of reaction: 5000RF . Such a choice of the cut-off distance is essential to obtain reliably the
exponents of asymptotic decay of N(t) for the case 2 < n < 3, in which the reaction disturbs
the distribution of particles at any (even large) distances. In addition, in this simulation the
value of xF is taken to be small, xF = 0.2, in order to reduce the initial quasistatic stage of
the reaction. For this value of xF the escape probability (estimated with equation (29)) is fairly
large: ϕ ∼= 0.9. The large value of ϕ allowed us to evaluate the exponents μ accurately enough
to reliably distinguish the systematic change of μ with the change of α.
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Figure 4. 2μ/α against n for reactivity k0(RF /r)m with m = 6 or 8, where μ is the exponent
obtained by fitting the numerical data to Cμt−μ. Dots and circles represent m = 6 and 8,
respectively. The solid line is 2μ f /α = 2(n − 2)/n.

4. Summary and conclusions

In this paper the kinetics of geminate reactions assisted by dispersive (subdiffusive) relative
motion of reacting particles is thoroughly analysed. The analysis is made with the use
of analytical solutions of the corresponding non-Markovian master equation and numerical
simulation of the process. The main goal of our work is to study the specific features of
interference of anomalous (dispersive) stochastic relative motion with long-range reactivity
which is modelled by the first order decay with the rate k(r) depending on the interparticle
distance r . In the analysis we have considered three models for k(r): the square box
model, exponential model k(r) ∼ exp(−2βr), and inverse power model k(r) ∼ 1/rm . The
interference is demonstrated to strongly manifest itself in some anomalous properties of the
reaction kinetics. The effects of interference are found both for static characteristics and
time dependence. In a wide region of parameters of the model the striking difference in the
kinetics is observed for reactions assisted by normal diffusion and by subdiffusion. Moreover,
the deviation of the reaction kinetics from that for normal diffusion is mainly determined by
the anomaly parameter α (which characterizes (anomalous) long-time behaviour of the mean
square displacement: 〈r 2(t)〉 ∼ tα , α < 1).

To demonstrate the appropriateness of the treatments based on the non-Markovian master
equation and numerical simulation, we have analysed the reaction modelled with reactivity
k(r) of square box form. This model allows for exact analytical solution. The results of both
calculations prove to agree completely. This analysis revealed, in addition, some important
general features of the reaction kinetics: for large amplitude and range of k(r), as well as for
initial distances deeply in the region of non-zero k(r), the kinetics, i.e., the number N(t) of
surviving pairs, is mainly quasistatic (exponential), while in the opposite case the long tail of
the kinetics is of inverse power type ns(t) = N(t)−ϕ(r0) ∼ 1/tα/2 with anomalous exponent.

In the case of more realistic reactivity k(r) (exponential and of inverse power type)
the non-Markovian master equation cannot be solved exactly. However, some important
anomalous properties of the kinetics N(t) under study are obtained by approximate analysis
of its asymptotic behaviour at long times.

In particular, some peculiarities of the subdiffusion-assisted reaction kinetics are very
clearly demonstrated by means of static observables (escape and reaction probabilities, rate
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constants etc). For example, it is shown that the dependence of reaction probability ϕr (r0) on
the initial separation r0 changes very significantly with the change of anomaly parameter α.
This is especially true for reactions with reactivity k(r) of inverse-power type, k(r) ∼ 1/r m :
for n = αm > 3 the result ϕr (r0) ∼ 1/r0 coincides with that predicted in the normal
diffusion approach, while for 3 > n > 2 it changes to the markedly weaker dependence
ϕr (r0) ∼ 1/rn−2

0 .
In parallel with the change-over in the dependence of ϕr (r0) on r0 the asymptotic behaviour

of reaction kinetics, N(t) also significantly changes as n = αm is changed. For n > 3 the long
time part of the kinetics ns(t) = N(t) − ϕ(r0) is similar to that obtained in the case of normal
diffusion but with t replaced by tα , i.e. ns(t) ∼ 1/tα/2. For 3 > n > 2, it becomes more
dispersive, though remaining of inverse-power type: ns(t) ∼ 1/tα(1−2/n). Strictly speaking,
such power law decay persists in the case of 4 > n > 3. The difference between the powers,
α(1 − 2/n) and α/2, is too small to distinguish between them by the numerical simulations in
this work.

In this paper we have confined ourselves to pure theoretical discussion of the anomalous
kinetics of subdiffusion-assisted geminate reaction. The obtained results should, however, be
important for various applications. As one of them the geminate recombination of photoin-
duced charge carriers in glasses has already been discussed in the literature [4, 5]. This reaction
is described by the exponentially decreasing reactivity k(r). The case of k(r) of inverse power
type is also quite important from the point of view of possible applications to excitation transfer
processes [8] as has already been mentioned in section 3.4. In connection with possible appli-
cation of the results, it is worth noting that as mentioned above (in section 3.4) when discussing
the accuracy of simulation data serious requirements on the accuracy of possible experimental
measurements have to be satisfied in order to observe some predicted anomalous features of
long-time asymptotic kinetics of subdiffusion assisted geminate reactions (for 3 > n > 2).

In this work we have concentrated on the analysis of the kinetics of geminate reactions.
However, the kinetics of geminate reactions is known to be closely related to that of bulk
reactions [8]. The correspondence between them is well established for reactions assisted
by normal diffusion. As for subdiffusion-assisted processes, there are still some problems to
solve [16], especially in the case 3 > n > 2 in which anomalous geminate kinetics is observed.
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Appendix. Derivation of equation (4)

As before [20], the problem is formulated on the basis of a discrete model on a periodic lattice of
dimension d and then take the continuous limit in space. We denote the vector characterizing
a jump to the nearest neighbour site j by �b j . In the presence of both jump processes and
reaction the waiting time distribution of making a jump and that of reaction are given by [35]
ψrw(�r , t) = ψ(t) exp(−k(�r)t) and ψrc(�r , t) = k(�r) exp[−k(�r)t] ∫ ∞

t dt1ψ(t1), respectively.
The equation for the probability η(�ri , t) dt of just arriving at site �ri in the time interval between
t and t + dt is written as

η(�ri , t) = 1

2d

2d∑
j=1

∫ t

0
dt1ψrw(�ri − �b j , t − t1)η(�ri − �b j , t1)+ δ�ri ,�r0 . (A.1)
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By subtracting
∫ t

0 dt1ψrw(�ri , t − t1)η(�ri , t1) from both sides of equation (A.1), we obtain in the
small-λ limit[

1 − ψ̂rw(�r, s)
]
η̂(�r , s) = λ2

[∇2/(2d)
]
ψ̂rw(�r , s)η̂ (�r , s)+ δ (�r − �r0) , (A.2)

where the Laplace transform is introduced, i.e. η̂(�r , s) = ∫ ∞
0 dt exp(−st)η(�r , t). The density

ρ(�r , t) is given in terms of the probability of remaining at a site, φ(�r , t) ≡ ∫ ∞
t dt1[ψrc(�r , t1)+

ψrw(�r , t1)], as ρ(�r, t) = ∫ t
0 dt1 φ(�r , t − t1)η(�r , t1). By noticing φ̂(�r , s) = [1 − ψ̂rw(�r , s) −

ψ̂rc(�r , s)]/s we obtain equation (4).
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